

Abstract— NASA’s next generation space communications
network will involve dynamic and autonomous services
analogous to services provided by current terrestrial wireless
networks. This architecture concept, known as the Space Mobile
Network (SMN), is enabled by several technologies now in
development. A pillar of the SMN architecture is the
establishment and utilization of a continuous bidirectional
control plane space link channel and a new User Initiated
Service (UIS) protocol to enable more dynamic and autonomous
mission operations concepts, reduced user space
communications planning burden, and more efficient and
effective provider network resource utilization. This paper
provides preliminary results from the application of model-
driven architecture methodology to develop UIS. Such an
approach is necessary to ensure systematic investigation of
several open questions concerning the efficiency, robustness,
interoperability, scalability and security of the control plane
space link and UIS protocol.

I. INTRODUCTION

The Space Mobile Network (SMN) is NASA’s next
generation architecture concept for space communications. It
will provide more dynamic and autonomous communications
services, analogous to those provided by modern wireless
terrestrial networks. The SMN architecture consists of a suite
of emerging technologies, including high-availability space
link channels, delay tolerant networking and other new
protocols, optical communications, and advanced position,
navigation and timing technologies [1]. Software and data
systems engineering play a key role in the transition to the
SMN architecture, enabling interoperability among new and
legacy elements, virtualization through software defined
radios and other network resources, and automation of
processes. Infusion, adaptation and extension of terrestrial
wireless communications network best practices are also
desirable, where appropriate [2].

A rigorous model-driven architecture methodology is
necessary to ensure and manage the desired holistic properties
of the SMN, given the necessarily piecemeal implementation
and infusion of new elements. This methodology utilizes
object-oriented modeling, computational process simulation,
virtual and physical prototyping, and technology
demonstration activities are methods to generate architectural

Christopher J. Roberts, Robert M. Morgenstern and David J. Israel are

with the NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
USA (phone: 301-286-7187; e-mail: christopher.j.roberts@nasa.gov).
 John M. Borky and Thomas H. Bradley are with the Walter Scott, Jr.
College of Engineering, Colorado State University, Fort Collins, CO 80523
USA.

data and experiential learning [3]. It allows architects to
characterize predicted and unanticipated emergent behaviors
among new and legacy elements, their interactions with
environmental factors, and system performance under various
conditions, including nominal, stress, and fault scenarios.

Object-oriented modeling emerged from the discipline of
software engineering, but is gaining acceptance as a more
generalized systems engineering method [4]. More responsive
development processes, such as spiral, evolutionary and agile
processes, are also being applied to systems engineering
efforts [3]. These software-inspired methods and processes
leverage design commonality and patterns, accommodate the
reality that a complete set of fully specified requirements is
often unknowable at the outset of the design effort, and are
responsive to changes in user needs or external conditions,
which may invalidate some requirements over time. Modern
software-enabled information-intensive systems, such as the
SMN, have requirements that are somewhat provisional, as
they are subject to change based on experiential learning or
dynamic externalities, and consist of heterogeneous elements
at various degrees of maturity and obsolescence. A model-
driven architecture methodology enables and enforces multi-
faceted system evolution by providing the architect and other
system stakeholders with the perspectives and tools to
understand and manage the complexity of these systems over
time [3].

The traditional paradigm for space mission operations
relies on highly scripted pre-planned processes between
people at space communications service providers and user
mission operations centers. Communications with user
mission platforms are typically intermittent, due to orbital,
geographic, and other space link resource constraints. Today,
there is limited or no automation on the user mission platform
for invoking space communications services in response to
dynamic events, or in the provider network for service
provisioning [1]. This paper provides preliminary results from
the application of a model-driven architecture methodology to
develop a more dynamic and autonomous Space Mobile
Network communications concept, known as User Initiated
Services (UIS).

Preliminary Results from a Model-Driven Architecture
Methodology for Development of an Event-Driven Space

Communications Service Concept
Christopher J. Roberts, Graduate Student Member, IEEE, Robert M. Morgenstern, Member, IEEE,

David J. Israel, John M. Borky, Senior Life Member, IEEE, and Thomas H. Bradley

https://ntrs.nasa.gov/search.jsp?R=20170009906 2020-03-10T21:23:01+00:00Z

The benefits of UIS include enabling new event-driven and
collaborative platform mission operations concepts, reduced
user burden for space communications service planning, and
more efficient and effective provider network resource
utilization. UIS is intended to be widely adopted, and
available from NASA and worldwide space communications
providers [1].

II. UIS ARCHITECTURE MODEL

The UIS concept requires the definition and utilization of a
highly-available (i.e., continuous or nearly so) bidirectional
communications channel through which users may invoke
space communications services (i.e., request a resource
agnostic service event, typically for higher data rate/lower
availability links) and exchange disposition messages with the
provider network until a proposed service event is validated.
It is also necessary to define the UIS protocol, consisting of
the message types, data structures, machine-to-machine
behavioral interaction sequences (including nominal, stress
and fault scenarios), and any performance timing constraints,
dependencies or interactions with other protocols in the stack.
A model-driven architecture methodology using a rigorous
and standardized object-oriented language, such as the
Systems Modeling Language (SysML), implemented in a
robust tool, such as MagicDraw, is well-suited for this
challenge [3]. This section presents and discusses the top-
level structural and behavioral representations of the UIS
system architecture.

A. UIS Concept of Operations and Requirements
UIS has as its distinguishing operational characteristic, user

invocation of a resource agnostic space communications
service event and automated service dispositioning between
the user and space communications provider network. These
communications occur through a highly available space link
channel between user mission platform(s) and the space
communications provider resources. Adopting the
architectural taxonomy of the software defined networking
community, this channel provides a control plane for UIS
service request messages and service event dispositioning [5].
The need for high availability of the control plane space link
likely drives the solution to space relay resources for near-
earth users [1]. For user mission data service provisioning and
execution, higher data rate services may be provided by one
or more space relay or direct-to-earth link resources. This UIS
operational concept is depicted in Figure 1.

Figure 1: UIS space link concept of operations

Once a user service request message is received by the
provider, orchestration of several software services is
required to disposition the request. These may include UIS
message format translation services, publish and subscribe
services to space link resource scheduler(s), publish services
to the forward (response) control plane space link resource,
UIS thread/instance management services, fault detection and
recovery services, cybersecurity services, service
accountability reporting and data archiving services. User
mission platforms or operations centers will also require
several software services to implement UIS. These may
include mission-specific UIS request initiation services, UIS
message format translation services into platform command
sequences, status monitoring and UIS event response
services, fault detection and recovery services, and advanced
position, navigation and timing services.

This concept of operations has led to a provisional set of
UIS capability requirements, capturing stakeholder needs and
constraints in Table 1. The purpose of this set of capability
requirements is to focus and guide the architectural modeling,
simulation, prototyping and demonstration activities. More
refined and detailed requirements will emerge based on
iterative analysis, synthesis and evaluation of results from
these activities.

Table 1: Provisional UIS capability requirements

Id Name Type Text
UIS1 1.1 Event-Based

Requests
Functional The UIS system shall autonomously initiate space

communication service requests based on specified
mission-specific events of conditions.

UIS2 1.2 Service Request
Ingest

Functional The UIS system shall ingest space communications
service requests.

UIS3 1.3 Route Service
Requests

Functional The UIS system shall route user-initiated service
requests for disposition processing.

UIS4 1.4 Broker with External
Schedulers

Functional The UIS system shall broker UIS task dispositioning
with external scheduling resources.

UIS5 1.5 Configuration
Brokering

Functional The UIS system shall broker configuration of space
communications link resources associated with UIS
tasks.

UIS6 1.6 Synchronization Functional The UIS system shall provide synchronization
mechanisms among (internal and external) elements
involved in UIS instance collaborations.

UIS7 1.7 Execution
Performance

Functional The UIS system shall execute UIS space
communications instances within network and mission-
specified performance.

UIS8 1.8 Service Accounting Functional The UIS system shall provide accountability reporting.
UIS9 1.9 Monitor Status Functional The UIS system shall monitor UIS service instance

status.
UIS10 1.10 Report QoS Metrics Functional The UIS system shall provide status reporting on

Quality of Service metric performance.
UIS11 1.11 Enforce SLAs Functional The UIS system shall enforce mission-specific Service

Level Agreements.
UIS12 1.12 Notification Functional The UIS system shall notify users of conditions

affecting UIS services.
UIS13 1.13 Fault Detection and

Recovery
Functional The UIS system shall provide fault detection, isolation

and recovery mechanisms.
UIS14 1.14 Archival Functional The UIS system shall archive UIS data.

UIS15 1.15 Operational
Availability

Performance The UIS system shall achieve operational availability
requirements (mission or deployment specific).

UIS16 1.16 Reliability Performance The UIS system shall achieve reliability requirements
(mission or deployment specific).

UIS17 1.17 Compatibility Design
Constraint

The UIS system shall achieve compatibility with existing
operations, maintenance and logistics organizations,
resources and processes.

UIS18 1.18 Enterprise Security Design
Constraint

The UIS system shall conform to enterprise
cybersecurity standards, policies and directives.

B. UIS Use Case Model
UIS is an extension of existing space communications

services, enabled by the infusion of automation and
orchestration technologies across a heterogeneous mix of
legacy and new elements.

Figure 2 documents traditional Tier 1 and Tier 2 space
communications use cases, and relates UIS as an extension to
these use cases. Usage dependencies are illustrated where one
element requires another element for its full implementation.
The usage dependencies depicted in Figure 2 establish that all
user mission operations use cases (i.e., near-earth, deep space
and celestial-body surface) have dependencies on space
communications services, and that the provisioning of space
communications services are, in turn, dependent on network
infrastructure support services. The scope of this preliminary
model is limited to investigation of the near-earth operational
use case because these scenarios impose the most demanding
latency requirements on the UIS architecture, have the
greatest number of potential users, and provide more readily
accessible opportunities for on-orbit demonstrations that are
essential to mature and validate UIS technologies. However,
the UIS concept is envisioned to be extended to deep space
and celestial surface operational use cases. As indicated by

the use case diagram, there are no envisioned extensions to
the network infrastructure support behaviors to enable UIS.

C. UIS Structural Domain Model
To facilitate widespread infusion of UIS technologies and

adoption of UIS, the UIS system must realize open
architecture principles, including modularity, loose coupling,
interoperability, and scalability. The deployment strategy
must accommodate UIS software modules implementing
UIS-enabling services in heterogeneous computational
runtime-environments, and on elements of both mission user
and space communications provider owned resources in space
and on the ground.

In a model-driven architecture, the objective is to establish
a top-level structural partitioning that supports realization of
open architecture principles [3]. This is achieved by grouping
related system information and activities into domains, which
collaborate to perform major system behaviors. These
domains also establish the basis for allocating requirements to
system resources. Interfaces between the domains are often
opportunities for standardization. Figure 3 illustrates the
domain partitioning of the UIS architecture in a block
definition diagram. Each domain element includes the
operations of the domain and associated values, which define
the system functions and information associated with the
element, respectively.
 UIS enables the transition from a “human-in-the-loop”
paradigm to a more dynamic “human-on-the-loop,” or fully
autonomous operations. As a result, the user roles for the UIS
system, indicated in the use case diagram and domain

Figure	2:	User	Initiated	Services	extend	traditional	space	communications	use	cases

block definition diagram, are rather limited. User Mission
Operations Manager, Network Manager and Support
Personnel roles are defined. External system resources also
take the form of user roles in SysML, but none have been
identified for UIS at this time.

D. UIS Activity Model
 In a model-driven architecture, system structure and
behavior are rigorously defined. Refinements to ensure
completeness, correctness and consistency are made as

system understanding is matured through stakeholder
feedback, new information and ideas, and results from
modeling, simulation, prototyping and demonstrations at
various levels of the system hierarchy. Definition of
capability requirements and use cases are typically followed
by structural partitioning into domains, which forms the
basis for requirements allocation to system resources. An
activity diagram furthers the architectural specification, and
illustrates a thread of activities across the previously defined
structural domains and user roles to perform a major system

Figure	3:	Domain	partitioning	of	the	UIS	architecture	block	definition	diagram

Figure	4:	Nominal	UIS	service	instance	activity	flow	diagram

behavior [3]. The construction of an activity diagram
provides an early test of the correctness, completeness and
consistency of the architecture modeling performed to this
point. An activity diagram showing a nominal instance of a
user service request, disposition and service event execution
is provided in Figure 4. The activity diagram establishes
control flows and object flows across the structural domains
and user roles. Space link control plane interactions
enabling user service request and dispositioning behaviors,
as well as behavioral interactions within the user mission
data plane, occur in the Network Link Execution domain.
Further decomposition of this domain is necessary to
address questions associated with the allocation of these
functions to space link resources. This is accomplished
through standardized object-oriented SysML artifacts,
including structural representations using block definition
diagrams and internal block diagrams, and behavioral
representations using state machine and sequence diagrams.
As discussed previously, the high availability requirement
of the control plane space link will likely drive solutions to
a space relay resource capable of supporting multiple
simultaneous UIS service instances, while the user mission
data plane space link may be instantiated by space relay and
direct-to-earth link resources with more limited availability.
The architectural model provides the structural and
behavioral framework within which these physical system
tradeoffs occur, enabling rigor and specificity on trade
criteria and ensuring traceability throughout the system
hierarchy.

E. UIS Message Data Modeling
Data modeling is a critically important aspect of

architecting information intensive systems, and often begins

through the iterative process of developing an activity
diagram [3]. Conceptual data objects represent the
information content of the architecture, and are exchanged
among the domains in the object flow of the activity diagram.
Using the inheritance properties of object-oriented languages,
these conceptual data objects may be grouped and abstracted
into foundational classes that describe broad categories of
data content. Common foundation classes in information-
intensive systems include plans, tasks, reports and messages
[3]. The logical data model is a level of abstraction below the
conceptual level, and describes the structure of conceptual
data objects in accordance with the inheritance, associations
and other relationships defined previously. The user service
request message provides an illustrative example of this
concept.

A user service request message must specify the attributes
of the requested space communications services. This
message includes a header and a payload. The header
information includes data about the message type and
transaction. The payload information includes transaction
setup and service request data. Figure 5 illustrates a
preliminary user request message logical data structure block
definition diagram for the request of a space link resource
agnostic telemetry service event for downlinking a user
specified data volume within a user specified deadline.

This logical data structure accommodates future protocol
versions, fault management, error correction, authentication,
confidentiality, integrity and non-repudiation mechanisms,
identity information supporting thread management,
archiving and retrieval, and quality of service information
such as user mission data volume, urgency and the user
specified deadline.

Figure	5:	Logical	data	model	of	a	UIS	user	service	request	message

III. DISCUSSION
As documented in this paper, the use of a model-driven

architecture methodology provides several advantages over
the more common ad-hoc systems architecting approach.
Standardized object-oriented languages originating in the
software engineering discipline have been extended to better
meet the needs of systems architecting. SysML artifacts,
including requirements, structural and behavioral diagrams
facilitate traceability, consistency and rigorous analysis,
synthesis and evaluation at all levels of the system hierarchy.

UIS provisional capability requirements, relationships to
traditional mission operations and space communications use
cases, and the top-level UIS structural, behavioral and data
models have been defined. Further UIS architectural
specification, in accordance with the model-driven
architecture methodology, is necessary to understand and
evaluate alternative UIS protocol and space link control plane
design trades.

In addition to the static object-oriented modeling presented
in this paper, computationally executable architectural
simulations are possible in SysML. In conjunction with more
traditional engineering simulation packages, these executable
models may be calibrated with experimental results from
prototyping and demonstrations. This powerful approach
allows induction of architectural performance and other
characteristics, informing key trade-offs at various levels of
the system hierarchy.

For UIS, key performance metrics and trade-offs may
concern the minimum, maximum and expected user wait time
elapsed between service invocation and execution under
various conditions, the physical data volume of alternative
UIS message data structures, the quantity of interactions to
invoke, disposition and execute UIS service instances, as well
as the control plane bandwidth and simultaneous service
instance capacity.

Computational simulation methods may also be used to
explore enterprise-level performance and emergent
behaviors, such as those pertaining to end-to-end service
disposition dynamics, including space-terrestrial network
traffic analysis, space-terrestrial resource scheduling policy,
and multi-criteria optimization trade-offs. Additional
investigations may pertain to the impacts of federating
resource event scheduling to multiple providers (e.g., U.S.
government, international, and commercial), and the impacts
of dynamic entry and exit of both users and provider resources
due to weather, asset maintenance or other service constraints
or enablers.

At each stage of development, insights from simulations,
prototypes and demonstrations will be fed back into the UIS
architecture model, resulting in an iterative, evidence-based,
consistent, cohesive and traceable system evolution. This
process is expected to maximize the likelihood of infusing
UIS enabling technologies, and ultimately widespread
adoption of user initiated services.

IV. CONCLUSION
NASA’s Space Mobile Network will involve dynamic and

autonomous services analogous to services provided by

current terrestrial wireless networks. A new service concept
under this paradigm, known as User Initiated Services,
extends traditional highly scripted mission operations and
space communications use cases through infusion of
software-enabled services across the user and space
communications provider domains. UIS will enable more
event-driven and collaborative mission operations concepts,
reduced user space communications planning burden, and
more efficient and effective provider network resource
utilization.

To realize the UIS concept, a continuously available space
link control plane must be defined and established to support
bidirectional communications between the user and provider
network. In addition, a new protocol must be defined
specifying message data structures, machine-to-machine
behavioral sequences and rules, all within a heterogeneous,
distributed, and evolving system and environmental context.

This paper documents preliminary results from the
application of model-driven architecture process to develop
UIS, including provisional capability requirements, use cases,
and the top-level system structural, behavioral and data
models. Such an approach is necessary to ensure systematic
investigation of several open questions concerning the
efficiency, robustness, interoperability, scalability and
security of the control plane space link and UIS protocol.
Future work will focus on continued specification of the UIS
architecture model, including iterative refinements based on
analysis, synthesis and evaluation of results from
computational simulation, virtual and physical prototyping,
and demonstration activities.

ACKNOWLEDGMENT
C.R. thanks Jacob Burke and Mark Sinkiat for their

contributions to the UIS logical data model, and the Cognitive
Communications Project at NASA Glenn Research Center for
their constructive review of concepts presented in this
manuscript. C.R. thanks Seema Vithlani and Carolyn
Crichton for technical editing and graphics support in
preparation of this manuscript.

REFERENCES
[1] D. J. Israel, G. W. Heckler, and R. J. Menrad, Space Mobile Network:

A Near Earth Communications and Navigation Architecture,
presented at the IEEE Aerospace Conference, Big Sky, MT, United
States, 2016.

[2] T. Newton, C. Roberts, G. Fletcher, and D. Rossiter, An Evaluation of
Terrestrial Wireless Network Modeling Approaches for the Space
Mobile Network, presented at the International Telemetering
Conference, Las Vegas, NV, United States, 2017.

[3] J. M. Borky, Architecting Information-Intensive Aerospace Systems.
Colorado State University, Ft. Collins, CO, September 2016.

[4] R. Hartmann ed., A World in Motion – Systems Engineering Vision
2025. International Council on Systems Engineering, October 2014.

[5] E. Haleplidis, K. Pentikousis, S. Denazis, et al., Software-Defined
Networking (SDN): Layers and architecture Terminology, Internet
Research Task Force (IRTF) Request for Comments: 7426, ISSN:
2070-1721, January 2015.

